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Abstract
Alfvén eigenmodes (AEs) are an important and complex class of plasma dynamics commonly
observed in tokamaks and other plasma devices. In this work, we manually labeled a small
database of 26 discharges from the DIII-D tokamak in order to train simple neural-network-
based models for classifying AEs. The models provide spatiotemporally local identification of
four types of AEs by using an array of 40 electron cyclotron emission (ECE) signals as inputs.
Despite the minimal dataset, this strategy performs well at spatiotemporally localized
classification of AEs, indicating future opportunities for more sophisticated models and
incorporation into real-time control strategies. The trained model is then used to generate
spatiotemporally-resolved labels for each of the 40 ECE measurements on a much larger
database of 1112 DIII-D discharges. This large set of precision labels can be used in future
studies for advanced deep predictors and new physical insights.

Keywords: machine learning, Alfvén eigenmodes, energetic particles, tokamak

(Some figures may appear in colour only in the online journal)

∗ Author to whom any correspondence should be addressed.

1741-4326/22/106014+10$33.00 1 © 2022 IAEA, Vienna Printed in the UK

https://doi.org/10.1088/1741-4326/ac8a03
https://orcid.org/0000-0002-6337-2907
https://orcid.org/0000-0001-8739-1793
https://orcid.org/0000-0002-2640-4527
https://orcid.org/0000-0001-6928-5815
https://orcid.org/0000-0002-6942-8043
mailto:azarakhsh.jalalvand@ugent.be
http://crossmark.crossref.org/dialog/?doi=10.1088/1741-4326/ac8a03&domain=pdf&date_stamp=2022-8-31


Nucl. Fusion 62 (2022) 106014 A.A. Kaptanoglu et al

1. Introduction

Future steady-state operation of nuclear fusion devices neces-
sitates active real-time control of a number of complex plasma
processes, including edge-localized modes [1–3], disruptions
[4, 5], and Alfvén eigenmodes (AEs) [6]. Some of these
dynamics are highly nonlinear, and can occur on fast time
scales and small spatial scales where many analytic assump-
tions break down. The reality of fast time scales requires that
many real-time plasma control schemes are limited to simple
models such as those based on 1D transport [7], linearization
or local-expansions [8–16], heuristics (based on prior experi-
mental knowledge) [17, 18], the biorthogonal decomposition
[19–24], and so forth. Despite the challenges posed by multi-
scale dynamics and nonlinearity, many of these models have
been successfully employed for real-time control in opera-
tional scenarios. However, future progress in controlled fusion
hinges on models that have the potential to overcome the many
barriers associated with predicting the dynamics of complex
plasmas.

Fortunately, there has already been remarkable success in
data-driven models for disruption identification and real-time
control in tokamaks [4, 5, 25–29], including high-performance
models that are not limited to a specific device [30]. Neural
network models can be trained offline and then used to predict
plasma activity online. There has also been recent deep learn-
ing work for automated identification of AEs in diagnostic data
[31–33]. Our prior work [34], briefly reviewed in section 1.3,
substantially advanced these AE studies by utilizing a large
database of high-resolution spatiotemporal data for AE pre-
diction. In addition to real-time control applications, machine
learning studies open the possibility for new physical under-
standing of this unique class of plasma modes in terrestrial
plasma experiments or even space-based probes [35].

Heuristic models for AEs have also seen some successes.
For instance, Hu et al [18] controlled AEs by computing a
measure of the strength of AEs ‘by the mean value of the
coherent power spectral density from Fourier analysis of tem-
perature measurements from ten pairs of ECE channels with
a bandpass between the geodesic acoustic and TAE frequen-
cies. . . averaged over the period of t = 400–700 ms’. Despite
this coarse-grained metric and lack of distinction between
AE modes, it worked reasonably well for a linear feedback
controller with neutral beam injection used as an actuator.

The purpose of this work is to use simple neural-network-
based models to provide more sophisticated spatio-temporal
predictions of AE activity. In this work, we meticulously label
a database of 26 DIII-D tokamak discharges in order to train
simple neural-network-based models for full spatio-temporal
AE classification, improving on previous work that could not
provide localized predictions in space and time. This models
are then used to generate new labels for the much larger
database [36] of 1112 DIII-D discharges.

In the remainder of this section, we briefly describe AEs
as well as the electron cyclotron emission (ECE) diagnostics
that we use to develop the data-driven models for locating
and identifying AE modes. These models are introduced in
section 2 and their performances are discussed in section 3.

1.1. Alfvén eigenmodes

AEs make up a diverse class of complex dynamics that
pose many challenges for simple machine learning mod-
els, generalization to new datasets, and analytic methods.
They are typically observed in tokamaks and other fusion-
relevant plasma devices, although they can also occur in space
plasmas [37]. Some AEs are extremely well-studied, while
others are recently discovered and yet to be fully under-
stood. Although their causes and effects vary widely, some
AEs can lead to confinement loss and damage to plasma-
facing components in present and future devices. Previous
examples include ablating carbon and ruining the transmis-
sion of optical components [38] and lost fast ions drilling
a hole in TFTR that actually vented the machine [39]. The
database used in this work (described in section 2) distin-
guishes between several types of AE activity: low-frequency
modes (LFMs have been formerly characterized as beta-
induced Alfvén-acoustic modes [36], denoted BAAE), beta-
induced Alfvén eigenmodes (BAE), reversed-shear Alfvén
eigenmodes (RSAE), and toroidal Alfvén eigenmodes (TAE)
[36, 40].

Distinguishing AE types can be done by utilizing both
the analytic theory and qualitative trends in a database of
discharges. Rough estimates of the typical frequency ranges
in a DIII-D discharge are � 50 kHz for LFMs, ∼30–150 kHz
for BAEs, ∼100–200 kHz for RSAEs, and ∼90–200 kHz
for TAEs. In addition to the somewhat separated frequency
ranges for some of these modes, they each exhibit a differ-
ent qualitative temporal character, which can be visualized
in a spectrogram. RSAEs exhibit frequency-chirping, LFMs
exhibit ‘Christmas-light’ patterns, TAEs tend to be longer
and relatively flat, and BAEs tend to be splotchy and inter-
mittent. Several plasma diagnostics can be jointly used for
distinguishing the AEs. Some of the AEs exhibit relatively
simple frequency dependence on the plasma parameters, and
their appearance on a spectrogram can be predicted reasonably
well [41]. TAE and RSAE are often observed concurrently
(presumably with some mode-mode coupling [42]), even in
discharges where each ECE channel only observes one or
the other. Finally, additional analytic and heuristic criteria
can be used; for instance, RSAEs are often localized near
the minima in the magnetic safety factor profile. The AE
modes are further described in table 1, where references to the
relevant theoretical and experimental manuscripts can also be
found.

Although AEs are relatively rare events, models for AE
classification can be trained because AEs appear on many
high-resolution plasma diagnostics and significant troves of
past data are often available on tokamaks such as DIII-D. For
future real-time control applications, there are a wide range
of experimental actuators that can be used to control different
AEs [6, 43–45].

1.2. Electron cyclotron emission

ECE provides direct local measurements of the electron tem-
perature for thermal plasmas [56], and as such, can provide
spatiotemporally-localized information about AE activity. The
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Table 1. Description of the AE activity considered in this work, adapted
from Heidbrink [55]. The poloidal wave number is denoted by m and the
minimum value of the safety factor is denoted qmin. Other AEs are omitted
because they were not common enough for adequate training using the
database described in section 2.

AE name Acronym Cause

Beta-induced BAE [46–48] Compressibility
Low-frequency modes LFM [36] Hot electrons, qmin ∼ rational
Reversed-shear RSAE [49, 50] qmin

Toroidal TAE [51–54] m & m + 1 coupling

Figure 1. Illustration of the 40 radial ECE measurement locations
alongside the closed (solid) and open (dashed) flux surfaces for an
example DIII-D discharge. The effective position of the ECE
channels can vary significantly in each discharge, and measurements
outside the last closed flux surface are not local or accurate.
Reproduced courtesy of IAEA. Figure from [34]. Copyright (2021)
IAEA.

DIII-D ECE diagnostic data is obtained at 500 kHz, in a
single toroidal cross-section, at 40 different channels corre-
sponding to varying radial locations, as shown in figure 1.
Each ECE channel spans an approximately 1–2 cm radial
extent, which is small compared to the radial scale of AEs.
Most of the time, an AE mode can be seen across several
channels.

Properly capturing the spatial correlations is difficult
because the effective position of the ECE channels changes

with the magnetic equilibrium, and therefore can vary sub-
stantially during startup operation. The first few ECE channels
regularly view data that is outside the last closed flux surface
and this data is considered untrustworthy. Despite this spatial
variability and data corruption, our prior work [34] used the
full, raw, unprocessed ECE data, i.e. only the ECE channel
indices corresponding to the relative major radial positions of
the measurements. This has the advantage that the magnetic
field evolution is not required. In the present work, we use the
time-resolved magnetic field equilibrium data from EFIT [57]
to map the ECE channels to the normalized plasma radius ρ,
the square root of the toroidal flux normalized by the value
at the last-closed flux surface. This mapping is motivated in
order to make spatially-local predictions, and a normalized
flux function like ρ is a natural choice. For instance, con-
sider that ECE channels that observe different radial loca-
tions may in fact observe the same flux surface and the
same AE.

1.3. Summary of results from prior work

Despite the simplifications that we described in the previous
subsection, high classification performance was obtained in
our initial work [34]. Table 2 illustrates the primary conclu-
sions of the prior work using a reservoir computing network
(RCN) [34]. RCNs are recurrent neural networks, and there-
fore are capable of processing temporal information while
providing a simple weights initialization and training pro-
cedure [58, 59]. This work used a very large but impre-
cise database that contains labels for a single time slice
per AE activity to indicate the approximate occurrence of
AEs in the time domain. These labels are specific to the
overall discharge but not specific to each ECE channel, so
spatially-localized prediction of the modes was not possi-
ble. Moreover, since only a single time slice label indicates
roughly where each AE occurs, significant interpolation and
windowing is required to train a proper machine learning
method. Otherwise, the learning architecture is attempting to
learn from a dataset with very few true positives and a very
large number of false negatives. Therefore, only somewhat
temporally-localized predictions were possible—predictions
of AE activity by the RCN were considered true positives if
they were within 500 ms of the corresponding ground-truth
time slice.
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Table 2. Summary of the highest performance model from Jalalvand et al [34], a two-layer RCN with 8K–500 nodes per layer, on a
validation set. A threshold of 0.2 has been applied to binarize the model output. There are 540 labeled AEs in this validation dataset.
Definitions for the acronyms and the TPR and FPR metrics are listed below the tablea.

AE TP FP TN FN P N TPR FPR

BAE 75 46 982 470 368 17 92 517 350 0.82 0.09
LFM 8 4102 587 088 3 11 591 190 0.73 0.01
RSAE 167 48 319 417 211 13 180 465 530 0.93 0.10
TAE 248 76 133 330 057 9 257 406 190 0.97 0.19

aTP ≡ True positive, FP ≡ False positive,
TN ≡ True negative, FN ≡ False negative,
P = Total# of labels with AEs (TP + FN),
N = Total# of labels without AEs (FP + TN),
TPR ≡ TP/P, FPR ≡ FP/N.

Furthermore, table 2 illustrates the highly imbalanced
nature of the data. Even after interpolation and windowing
of the original labels, only about 0.02% of the training or
validation sets are labeled as an AE. This fact is why true-
positive-ratio (TPR) and false-positive-ratio (FPR) are the pri-
mary metrics reported in that work. Reporting the accuracy
of the model, by calculating the ratio of correctly predicted
labels divided by the total number of samples in the dataset
((TP + TN)/(P + N)), would be profoundly misleading; a
model that never raises flag for any AE activity (TP = FP = 0,
TN = N, FN = P) would still report accuracy above 99%.
Despite the many shortcomings of the data, the strong per-
formance with RCNs was encouraging for continued machine
learning work.

In contrast to this prior work, the present work uses a
much smaller but precisely-labeled database to train models
that can make spatiotemporally-local predictions of AE activ-
ity. This ability facilitates the prediction of different AEs on
specific flux surfaces in the plasma, and the trained model
can be used to produce precise ECE labels in much larger
databases.

2. Spatiotemporally-localized AE classification

The previous work identified that the primary avenue for
further improvements was to provide improved database
labels that are unique to each ECE channel, facilitating
spatiotemporally-localized machine learning predictors. For
instance, it was found that other machine learning classi-
fiers (MLPs, GRUs, RNNs, CNNs, etc) that were trained
with the original, large database struggle to find performance
�70% TPR, and very quickly overfit to the data. This poor
training performance persists despite the different learning
architectures, and despite large variations in the network
hyperparameters. This behavior is characteristic of database
labels that are of insufficient quality for training accurate
machine learning models. This is an expected finding—the
database labels are not unique to each ECE channel so the
model is inevitably being trained on many false positives and
many false negatives, providing an upper bound on the per-
formance achievable with any machine learning model. This

finding further motivated a second, much smaller database
consisting of higher-precision, spatiotemporally-localized AE
labels.

2.1. High precision database labels

ECE-channel-specific labels were produced by selecting
26 very active DIII-D discharges, manually examining all
26 × 40 = 1040 ECE channel spectrograms, and providing
specific time and frequency windows for the labels (a box
is drawn on the spectrogram where the mode appears). This
labeling process relied on the visual identification of the dis-
tinctive features of each AE (discussed in section 1.1) in the
spectrograms. Analytic profiles for the TAE and minimum
RSAE frequencies [41] were computed throughout the time
evolution and superimposed on top of the spectrograms to
aid in the labeling process. The determined labels were also
cross-checked for reasonable consistency with the discharge-
wide labels from the larger database used in prior work. These
original labels were in turn often cross-checked with a few dif-
ferent experimental diagnostics, including ECE, CO2 interfer-
ometry, and magnetics, especially when concurrent AEs were
present.

This manual examination becomes significantly easier by
first using standard image processing techniques [60] to
enhance the spectrograms by highlighting the AE activity
[61]. Each spectrogram is shape 3709 × 256 in time × fre-
quency space, with bin sizes of approximately 50 μs × 1 kHz.
The denoising process is as follows: the spectrogram val-
ues are (1) converted to the log of the values, (2) nor-
malized to [0, 1], (3) thresholded off if below the 90%
quantile, (4) Gaussian-filtered with temporal standard devi-
ations (31, 3), (5) mean-filtered along the frequency dimen-
sion, (6) morphologically-filtered,and finally (7) mean-filtered
along the frequency dimension again. Across the vast majority
of ECE spectrograms obtained from a wide range of DIII-
D discharges, this image filtering sequence was empirically
found to perform well at highlighting the AE activity while
denoising the remainder of the image, as in figure 2.

Although this is a very small subset of the original database,
each spectrogram provides 3709 time slice input vectors, each
of dimension 256, meaning a total of ∼4 million input vectors
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Figure 2. From top to bottom this illustration shows three ECE channel time series for the DIII-D test discharge 178637, along with the
corresponding spectrograms, the denoised spectrograms, the manual labels corresponding to each ECE channel, and the predictions using
the baseline model described in section 3.1. These predictions were facilitated by the creation of a small dataset of 26 discharges containing
high-precision labels unique for each ECE channel. The model closely predicts the manual labels, albeit with weaker strength.

for training models. The raw signals, spectrograms, denoised
spectrograms (denoised as described in the previous para-
graph), labels, and predictions are illustrated for three active
ECE channels during DIII-D discharge 178637 in figure 2.
The model was not trained on this discharge. The denoising
process strongly highlights the AE activity and improved both
the manual and model-based labeling; models trained with the
denoised spectrograms universally outperformed models with
the raw spectrograms.

Out of the 1040 ECE channel spectrograms, ≈2% of the
total time series contain an LFM, ≈3% contain BAE, ≈8%
contain RSAE, and ≈7% contain TAE. However, often the
AEs are concurrent, so this is an underestimate of the inac-
tive periods. The total number of ‘events’ of each type are
143 LFM, 329 BAE, 415 RSAE, and 441 TAE (this can be
reconciled with the previous percentages because BAE tends

to appear on the ECE channels as short, isolated events). Over-
all, approximately 95% of the samples in this sub-database has
no AE activity whatsoever. Although still quite imbalanced,
this database is a substantial improvement over the original
one where approximately 99% of the data contained no AE
activity (or at least no AE labels).

3. Models and results

Evaluating model performance with this database is not
straightforward. Often, the TPR and FPR are used for imbal-
anced datasets. However, we are primarily interested if the
model can provide accurate, spatiotemporally localized pre-
dictions of the AEs. In other words, metrics should be evalu-
ated not on individual spectrograms, but on the full, 40 channel
ECE data. Each discharge’s ECE data forms an ‘image’ in the
space of normalized plasma radius and time (ρ, t).
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Figure 3. IOU values for each of the AE types as a function of the
threshold λ. The IOU values were computed from the five test
discharges.

One of the primary metrics in the field of image segmen-
tation is the intersection-over-union (IOU) [62–64]. For each
AE type, this metric places a bounding box over the entire
active portion of the ground truth image, and another bounding
box over all of the active image pixels that are predicted by
the model to be above some threshold value λ. Then the IOU
can be computed from these two bounding boxes, providing a
similarity metric between the predictions and manual labels.
IOU above 0.5 is typically considered strong performance in
image identification.

3.1. Multi-layer perceptron models

As a baseline, a multi-layer perceptron (MLP) with three lay-
ers, 512 nodes per layer, and interleaving 30% dropout layers
was trained with the mean-squared error loss, directly on the
denoised spectrogram data from this new database. Each input
is a single column from the denoised spectrogram, i.e. a feature
vector of length equal to the number of frequency points in the
spectrogram. Therefore, the inputs do not contain any temporal
information beyond that which is encoded in the frequency
information in the spectrogram. Such a memory-less approach
tends to produce rather ‘spiky’ predictions, so we smooth the
outputs using a running average with a window of ∼50 ms. In
order to compare some of model predictions with the manual
labels, the 26 discharges are split into 16 training discharges,
5 validation discharges, and 5 testing discharges in a way
that provides enough LFM and BAE instances for training.
Model performance was fairly insensitive to changes in the
dropout rate, additional nodes per layer, and other network
hyperparameters.

The performance of the model is evaluated by computing
the IOU for each of the validation discharges and for each of
the AE types as a function of the prediction threshold λ. The
full IOU validation results are shown in figure 3 and indicate
that at λ ≈ 0.4, LFM, RSAE, and TAE IOUs are ≈40%–80%
or higher, while the BAE IOU peaks at ≈20%. It is possible
that the lower performance for BAE is because this mode

Figure 4. Summary of the IOU results for the 5 test discharges, at
a threshold of λ = 0.4. Apart from some of the BAE, it is visually
apparent that the model can accurately predict the spatiotemporal
dependence of the modes; the primary degradation in the LFM,
RSAE, and TAE IOU tend to be isolated outlier predictions, which
could be removed by additional output smoothing. It is also worth
noting that the manual labels are not perfect. It is possible that in
some cases, the model is actually more accurate than the provided
labels. For instance, on additional inspection discharge 159246 looks
like it does exhibit some weak LFM activity at the location predicted
by the model, and had been labeled as such in the original database
containing 1112 discharges (but not in the database of 26 discharges).

tends to be more intermittent than other AEs. We plot each
validation discharge image and the corresponding bounding
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Figure 5. Illustration of the predictions for the linear, RCN, MLP, and MLP + derivatives models on the active ECE channels in discharge
170669, along with the RCN outputs from our prior work [34]. The linear model struggles to accurately predict AEs, the new RCN and the
MLPs predict AEs quite well, and the older RCN accurately predicts the ‘average’ AE content of the discharge but cannot distinguish
between ECE channels. Recall that the RCN from previous work was trained on a different set of labels that is not unique to each ECE
channel; despite this setback, it predicts well the timing and type of primary AE activity that occurs over the majority of ECE channels.

box in figure 4 for a threshold of λ = 0.4. The visualization
illustrates that the model accurately captures the spatiotempo-
ral location of AE activity in all the testing discharges, with
most of the degradation in IOU coming from small outliers.
The model IOU can frequently be further improved by using
a more aggressive output smoothing than the 50 ms running
average employed here.

The baseline MLP did not use spatial or temporal corre-
lations in the data to train, and yet manages to accurately
capture much of the spatiotemporal dependence of AEs in
the data. The frequency content at a single time slice of the
individual denoised spectrograms is apparently already very
informative for AE classification. Temporal memory was also
found to be fairly unimportant in our prior work. The lower
performance with BAE and LFM may be a symptom of the
simplicity of this MLP. The MLP is only three layers, and
the input data contains no temporal memory for the MLP to
extract. There is no spatial memory either, because each ECE
channel is processed individually. This is not very relevant for
BAE and LFM, which tend to have smaller spatial extents
than TAE or RSAE. LFMs in particular exhibit a complex
pattern in time, meaning one might expect that identifying
these modes would be more sensitive to temporal memory. A
simple way to incorporate some temporal information in these
models is to enrich the input by including first and second
temporal derivatives, calculated from an arbitrary window of
size Δt around each input at time t. This triples the size of the
input features, but we observe some minor improvements in
performance. The addition of temporal information primarily
increases the confidence of the model decisions, particularly
for detecting LFM.

3.2. Other models

The MLP models were then compared with two other rela-
tively simple machine-learning models, one based on ridge
regression and another based on a two-layer RCN. The MLP
outperforms ridge regression, which struggles to identify BAE
or LFM, cannot distinguish between TAE and RSAE, and
struggles to fully turn off when AE activity is not present.
The RCN performs similarly to the MLP model. All four
of the linear, RCN, MLP, and MLP + derivatives models
were tested against a set of 20 randomly chosen discharges to
visually compare model performances. A representative set of
spectrograms from discharge 170669 are illustrated in figure 5,
along with the outputs from the original RCN used in our
prior work. The RCN and MLP models accurately predict AE
activity quite well. The older RCN predicts the overall AE
activity in the discharge well, but cannot distinguish activity in
each ECE channel since it was trained on the original database
labels that are not specific to ECE channel. Nonetheless, the
older RCN performs well at predicting the timing and type of
primary AE activity that occurs across the ECE channels.

Encouraged with the performance of this baseline MLP, we
now use the model to predict labels for the large database con-
sisting of another 1112 DIII-D discharges. This larger database
varies across a very wide range of parameter space despite
the database having been compiled to focus on discharges
with energetic particles. This sort of bootstrapping is critical
for creating more useful datasets in the fusion community;
recent work [65] provided similar labels for LH transitions in
a DIII-D database. In this scenario, we denote a ‘true AE’ in
a specific ECE channel if the mode is predicted to occur with
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Figure 6. The model correctly identifies minor AE activity
throughout the database, which is not usually labeled manually.

probability >0.2 for more than 50 ms of the data. With this
definition, the percent of spectrograms in the database with at
least one occurrence of LFM, BAE, RSAE, or TAE is 3.9%,
1.0%, 22%, and 24% respectively. However, the percentage
of time in the whole database where each AE is predicted to
occur with probability >0.2 is only 0.6%, 0.2%, 4.8%, 5.2%.
In total, 8% of the data has at least one of type AE occurring.
This estimate contains significantly more AE activity than was
originally labeled in this database and it alone represents an
interesting finding. It provides an estimate for the frequency
of occurrence in AE modes across a broad parameter space
of DIII-D operation. A representative example is illustrated in
figure 6 where weak AE activity was originally ignored but the
model correctly predicts AEs. Future work could cluster the
AE activity by various plasma parameters in order to assess AE
occurrence frequencies and other AE properties in different
dynamical regimes.

4. Conclusion

A small set of 26 DIII-D discharges were manually labeled
for AE activity and used to train machine learning models
to generate spatiotemporally localized classification of AEs.
Initial work with this small database shows that simple
machine-learned models can already produce strong
spatiotemporally-localized AE classification from denoised
spectrograms of individual DIII-D ECE channel data. The
baseline MLP model performs favorably compared with a
ridge regression model, a RCN model, and a memory-aware
MLP. The baseline MLP was subsequently used to generate
spatiotemporally localized labels for a much larger database
of 1112 DIII-D discharges. These labels facilitate future
work using more sophisticated deep learning models, as
well as physical studies on the characteristics of AEs in
different dynamical regimes. Additional future work includes
prediction and control algorithms for AEs and combining
datasets from different diagnostics such as ECE, soft x-ray
(SXR) imaging, magnetics, and beam-emission spectroscopy.
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